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ABSTRACT

Optimizing a transmit MIMO radar waveform subject to the

non-convex constant modulus constraint remains a problem

of enduring interest. The past decade has seen a variety

of tailored iterative approaches with various performance-

complexity trade-offs. Despite promising work, iterative

algorithms have a speed handicap and require meticulous

parameter tuning. Once trained, a deep network can quickly

regress the desired waveform coefficients, but it is a black box

and may excel only when generous training is available. We

present a fast, learned, and - for the first time - interpretable

(FLI) deep learning approach by unrolling a state-of-the-art

iterative optimization approach. We particularly leverage the

recently proposed projection, descent, and retraction (PDR)

algorithm and design a deep network where each PDR step

is mapped to a layer in the neural network while preserving

the non-convex constant modulus constraint. FLI breaks the

trade-off between complexity and performance. It is near

real-time with boosted performance – fidelity to the desired

beampattern – compared to the state-of-the-art alternatives.

1. INTRODUCTION

Thanks to the potential advantages of independent transmit

waveforms, multiple-input multiple-output (MIMO) radar

systems have received significant attention in recent years [1].

MIMO radar transmits waveforms from its transmitting el-

ements and extracts information about targets and the sur-

rounding environment from received signals containing re-

flected echoes. MIMO radar performance is often evaluated

by signal to interference plus noise ratio (SINR) [2–4]. Es-

pecially, SINR can be enhanced by optimizing the transmit

waveform to minimize the deviation against an idealized

beampattern, called the beampattern design problem [5–9].

An idealized beampattern of a wideband radar system is

defined in two domains: spectral and spatial [10]. In the

spectral domain, a radar system can have a limited range of

frequency use due to the coexistence of other radio systems.

Regarding spatial information, once the expected location of

targets is known, the transmit beampattern should be designed

to focus the transmitted power in certain directions of interest.

The practical limitation of constant modulus constraint

(CMC) accompanies the radar waveform design problem due

to the existence of non-linear amplifiers [11]. The MIMO

waveform design under CMC is a well-known hard, non-

convex problem [5, 12], whose global optimum remains elu-

sive. Numerous proposed approaches produce suitable wave-

forms dealing with the non-convexity of this problem. Many

iterative algorithms solve the beampattern design problem

under CMC with varying analytical techniques. For instance,

the methods proposed in [7,9,10,13] employ a mix of convex

relaxations, sequence of convex problems, and majorization-

minimization methods to address the vexing CMC. In most

methods, CMC is usually not maintained in each algorithm

step but achieved at algorithm convergence/termination.

In contrast with the aforementioned methods, Project-

descent-retract (PDR) [8] is a recent state-of-the-art (SOTA)

algorithm that develops a gradient-based method directly on

the non-convex CMC set (with guaranteed convergence) by

employing principles of optimization over manifolds. PDR

has been validated in various scenarios with different desired

beampatterns and demonstrated SOTA performance in [8,10].

Despite substantial progress in beampattern design [5,6,8,

10, 12, 14, 15], iterative algorithms dealing with CMC gener-

ally have the inherent trade-off between computational com-

plexity and achieved performance. Specifically, the complex-

ity increases with the problem dimension, i.e., more transmit

antennas and time samples. Eventually, many iterative algo-

rithms may incur a computational burden that prohibits them

from being applied to practical radar systems.

As an alternative to iterative algorithms, deep learning

(DL) methods have recently been proposed [16, 17] for the

waveform design problem under CMC. These DL-based

methods use pre-trained neural networks from training data,

and they use the modeling capacity of well-known deep archi-

tectures to approximate hard non-linear mappings. However,

DL requires extensive and diverse training data to mitigate

overfitting to the training set. For radar waveform design, the

known DL methods [16, 17] are invariably black-box; that

is, they lack the interpretability of the process of producing

a solution. Algorithm unrolling [18] has recently emerged

as a promising solution to mitigate the problems mentioned

above with DL. Rather than building an arbitrary network

structure for DL, the network designed through algorithm

unrolling mimics an existing iterative algorithm such that

each iteration maps to a custom-designed layer. The structure

inspired by a well-founded iterative algorithm may enhance

training performance and provides interpretability. AlgorithmIC
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Fig. 1. Uniform Linear Array (ULA) MIMO radar system

unrolling has recently found compelling applications across

sparse coding, imaging, and communications [19–23].

In this paper, we develop a first-of-its-kind unrolled deep

network algorithm for the beampattern design problem under

the CMC constraint, named fast, learned, and interpretable

(FLI) deep beampattern design. Inspired by the PDR algo-

rithm [8], FLI produces an always-feasible deep learning so-

lution. It can estimate a waveform satisfying the CMC con-

straint in a relatively short time and with a relatively small

error compared to other SOTA algorithms. Our work makes

the following contributions: 1) to the best of our knowledge,

we developed the first unrolled algorithm for radar beampat-

tern design problem under CMC, 2) a customized deep archi-

tecture is developed that implements the PDR steps and in-

troduces pruning and expansion layers that can help discover

better minima candidates, 3) FLI uses significantly fewer it-

erative steps (network layers) than PDR, as it learns the pa-

rameter values of the PDR algorithm from the dataset intro-

duced in training, 4) FLI does not require an input-output pair

of the desired beampatterns and their corresponding optimal

waveforms, instead we use the deviation from the idealized

beampattern cost function as a self-supervised training loss.

2. BACKGROUND AND PROBLEM-SET UP

The objective of the beampattern design problem is to mini-

mize the deviation between the desired beampattern and the

actual beampattern generated by the transmitted waveform

x. Waveforms are transmitted from M antennas with inter-

element spacing d, as shown in Fig.1. If we use N samples of

the signal in the time and frequency domain, the beampattern

design problem under the CMC can be formulated as [5,8,10]

min
x

f(x) =

S∑

s=1

N
2 −1∑

p=−N
2

[dsp − |aHspFpx|]
2 (1a)

s.t.: |x| = 1 (1b)

where x ∈ C
L, L = M × N , dsp ∈ R

+ is the desired

beampattern at discrete angle s and frequency p, asp is the

steering vector and Fp is a Fourier matrix as in [8]. CMC

(|x| = 1) implies that |xl| = 1 for l = 0, 1, · · · , L. To enable

a quadratically based cost function, [5] rewrote f(x) as

f(x) =
S∑

s=1

N
2 −1∑

p=−N
2

|dspe
jϕsp − aHspFpx|

2 (2)

where φsp = arg{aHspFpx}. Since both x and φsp are un-

knowns, this problem can be solved iteratively by minimizing

(2) with respect to x and then fixing x and minimizing with

respect to {φsp} [5, 8]. For fixed {φsp}, simplify (2) as

f(x) = xHPx− qHx− xHq+ r (3)

where P =
∑

p F
H
p AH

p ApFp, q =
∑

p F
H
p AH

p dp, r =∑
p d

H
p dp and

Ap =



aH1p

...

aHSp


, dp =



d1pe

jϕ1p

...

dSpe
jϕSp


.

Let SL be the CMC waveform set, (1) with fixed {φsp} is:

min
x∈SL

f̄(x) = xH(P+ γI)x− qHx− xHq (4)

where γ ≥ 0 is for numerical convergence control but does

not affect the optimal solution. PDR is an iterative algorithm

to solve (4) using three steps: projection, descent, and retrac-

tion. This unique algorithm utilizes gradient descent while

maintaining CMC by updating iteration index k as [8]:

1. Projection of search direction onto the tangent space.

PTx(k)
SL

(
η(k)

)
= η(k)−Re{η∗

(k)⊙x(k)}⊙x(k) (5)

where η(k) = −∇xf̄(x(k)) is the search direction, and

Tx(k)
SL is the tangent space

2. Descent update of x(k) on this tangent space.

x̄(k) = x(k) + βPTx(k)
SL

(
η(k)

)
(6)

3. Retraction of x̄(k) to the complex circle manifold.

x(k+1) = x̄(k) ⊙
1

|x̄(k)|
(7)

where ⊙ denotes the Hadamard product.

3. FLI FOR RADAR BEAMPATTERN DESIGN

FLI uses interpretable as opposed to the typical black-box DL

blocks. Fig. 2 depicts the complete network structure. It con-

sists of cascaded blocks mimicking the steps of an iterative

algorithm. In each block, FLI progresses to a new set of

solutions closer to the minimum value of the cost function.

At each step (layer in the unrolled network), FLI operates

similarly to the Project Descent Retract (PDR) algorithm [8].

However, unlike PDR, FLI utilizes training data and adapts to

the loss function characteristics to speed up the convergence,

as shown in Section 4. Thus, it requires a significantly lower

number of steps to converge. In other words, we reduce the

memory footprint and increase the speed of our DL model,

which are common problems with many DL models that hin-

der their application to the beampattern design problem. At

initialization, I(·) utilizes the training dataset to find good

initial values {x
(j)
0 }Ne

j=1 for the given desired beampattern d.
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Fig. 2. Proposed FLI Architecture. Trainable blocks are colored in Orange and blocks with fixed parameters in Blue .

I(·) consists of multiple fully connected layers with the input

of size R
NS×1 and the output of size C

L×1. At each layer

Ji(·), we estimate (learning) a descent direction ηi and a step

size βi. Then, we perform projection P(·) and retraction R(·)
similar to PDR:

η
(j)
i = P

(
η
(j)
i

)
= η

(j)
i − Re{η

(j)
i ⊙ x

(j)
i } ⊙ x

(j)
i (8)

x
(j)
i = x

(j)
i + βiη

(j)
i (9)

x̃
(j)
i = R(x

(j)
i ) = x

(j)
i ⊙

1

|x
(j)
i |

(10)

Note also that we introduce two new layers; Prune Ni(·) and

Expand Ei(·). Prune reduces the number of generated vec-

tors {x
(j)
i }Ne

j=1 from Ne to Np by discarding vectors with the

highest values for (1a). On the other hand, Expand increases

the number of vectors {x
(j)
i }

Np

j=1 back to Ne. Thus, it gen-

erates new possible candidates that may lead to a better solu-

tion. To summarize, the operators in orange in Fig. 2 are train-

able. Hence, key algorithm parameters such as descent direc-

tion and step size, which are otherwise fixed in PDR, are now

learned from training data, thereby boosting performance and

enhancing convergence speed. Finally, while many existing

iterative algorithms could be unrolled, our choice of PDR is

in part motivated by the fact that in addition to projection and

descent, the retraction step guarantees feasibility, i.e., that we

necessarily estimate a CMC waveform.

We use fully connected layers throughout the implemen-

tation1 in contrast to convolution layers, as there is no spa-

tial/temporal locality that can be utilized in the vectors {x
(j)
i }.

I(·) consists of 7 fully connected layers with intermediate

number of neurons = 1000. After each layer, we use Com-

plex Batch Normalization and Complex ReLU, as defined in

[24, 25].Our realization of FLI was based on κ = 5 layers in

contrast to 100 or so iterations typical for PDR convergence.

Dataset and Training: We generated a set of 20k beampat-

tern specifications to train our network in a self-supervised

manner; we do not have ground-truth solutions for them. In-

stead, we devised the training loss below using f(·) as in (1a).

L = f(x̂⋆) + λf0

Ne∑

j=1

f(x
(j)
0 ) (11)

1FLI code and architecture specifics can be found here: https://

github.com/kareem-metwaly/BeampatternDesign; we have

verified that FLI results are robust to hyperparameter choices (λf0, etc.)

Table 1. Deviation from the desired beampattern.

Method Type Error (dB) Time (sec) # Iter.

Unconstrained 19.52 - -

WBFIT [5]

Iterative

Methods

33.11 0.39 199

SDR [26] [14] 28.41 1190 33

IA-CPC [15] 30.86 14.47 180

ADMM [12] 28.91 20.36 208

PDR [8] 26.69 7.38 115

VSGP [27] 31.63 4.01 42

CON [17] Deep 27.15 0.13 −

FLI (Ours) Learning 24.82 0.15 −

4. EXPERIMENTS

Parameter Settings and Simulation Set-up: We set λf0 to

be 0.5 and the learning rate to be 10−3 via cross-validation.

Our simulation sets the number of time-samples N to be 32,

the number of transmit antennas M to be 40, and the number

of discretized angular sub-intervals S to be 90, respectively.

Results: We employ the desired beampattern specification

(non-overlapping with training) used widely in previous work

d(θ, f) =





0 θ = [10◦, 80◦], −B
2 + fc ≤ f ≤ fc

0 θ = [95◦, 145◦], fc ≤ f ≤ B
2 + fc

1 Otherwise.

(12)

As shown in Table 1, FLI achieves better results compared

to other iterative and deep learning-based methods2 with a

computational footprint (inference) that is near real-time.

The measured error is defined as 10 log10(f(x̂
⋆)). The lower

bound of the error is the one obtained from unconstrained

optimization (i.e., without the constant modulus constraint).

Fig. 3 depicts the visual results of FLI and selected compet-

ing state-of-the-art methods. As is evident from Fig. 3, FLI

generates the closest beampattern to the unconstrained case.

5. CONCLUSION

We present FLI, an unrolled, interpretable deep learning algo-

rithm for the beampattern design problem under the constant

modulus constraint. FLI offers both performance (fidelity to

the desired beampattern) and computational benefits over the

state-of-the-art. Future work may investigate the generaliz-

ability of FLI vs. known black-box deep learning alternatives.

2For fairness of comparison, we implement the phase-prediction architec-

ture exactly as in CON [17] but train it with the same data as FLI.
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(e) CON
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(f) FLI
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(c) PDR
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(d) VSGP
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(a) Unconstrained
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Fig. 3. Visual results of FLI compared to other state-of-the-art (iterative and deep learning based) methods.
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